411 research outputs found

    Tensor-Rank and Lower Bounds for Arithmetic Formulas

    Full text link

    An asymptotic bound for secant varieties of Segre varieties

    Full text link
    This paper studies the defectivity of secant varieties of Segre varieties. We prove that there exists an asymptotic lower estimate for the greater non-defective secant variety (without filling the ambient space) of any given Segre variety. In particular, we prove that the ratio between the greater non-defective secant variety of a Segre variety and its expected rank is lower bounded by a value depending just on the number of factors of the Segre variety. Moreover, in the final section, we present some results obtained by explicit computation, proving the non-defectivity of all the secant varieties of Segre varieties of the shape (P^n)^4, with 1 < n < 11, except at most \sigma_199((P^8)^4) and \sigma_357((P^10)^4).Comment: 14 page

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code CC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then CC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Efficient processing node proximity via random walk with restart

    Get PDF
    Graph is a useful tool to model complicated data structures. One important task in graph analysis is assessing node proximity based on graph topology. Recently, Random Walk with Restart (RWR) tends to pop up as a promising measure of node proximity, due to its proliferative applications in e.g. recommender systems, and image segmentation. However, the best-known algorithm for computing RWR resorts to a large LU matrix factorization on an entire graph, which is cost-inhibitive. In this paper, we propose hybrid techniques to efficiently compute RWR. First, a novel divide-and-conquer paradigm is designed, aiming to convert the large LU decomposition into small triangular matrix operations recursively on several partitioned subgraphs. Then, on every subgraph, a “sparse accelerator” is devised to further reduce the time of RWR without any sacrifice in accuracy. Our experimental results on real and synthetic datasets show that our approach outperforms the baseline algorithms by at least one constant factor without loss of exactness

    Local Volatility Calibration by Optimal Transport

    Full text link
    The calibration of volatility models from observable option prices is a fundamental problem in quantitative finance. The most common approach among industry practitioners is based on the celebrated Dupire's formula [6], which requires the knowledge of vanilla option prices for a continuum of strikes and maturities that can only be obtained via some form of price interpolation. In this paper, we propose a new local volatility calibration technique using the theory of optimal transport. We formulate a time continuous martingale optimal transport problem, which seeks a martingale diffusion process that matches the known densities of an asset price at two different dates, while minimizing a chosen cost function. Inspired by the seminal work of Benamou and Brenier [1], we formulate the problem as a convex optimization problem, derive its dual formulation, and solve it numerically via an augmented Lagrangian method and the alternative direction method of multipliers (ADMM) algorithm. The solution effectively reconstructs the dynamic of the asset price between the two dates by recovering the optimal local volatility function, without requiring any time interpolation of the option prices

    Root to Kellerer

    Full text link
    We revisit Kellerer's Theorem, that is, we show that for a family of real probability distributions (μt)t[0,1](\mu_t)_{t\in [0,1]} which increases in convex order there exists a Markov martingale (St)t[0,1](S_t)_{t\in[0,1]} s.t.\ StμtS_t\sim \mu_t. To establish the result, we observe that the set of martingale measures with given marginals carries a natural compact Polish topology. Based on a particular property of the martingale coupling associated to Root's embedding this allows for a relatively concise proof of Kellerer's theorem. We emphasize that many of our arguments are borrowed from Kellerer \cite{Ke72}, Lowther \cite{Lo07}, and Hirsch-Roynette-Profeta-Yor \cite{HiPr11,HiRo12}.Comment: 8 pages, 1 figur

    Short Proofs for the Determinant Identities

    Get PDF

    Types of Depth and Formula Size

    Get PDF

    Resolution of Linear Algebra for the Discrete Logarithm Problem Using GPU and Multi-core Architectures

    Get PDF
    In cryptanalysis, solving the discrete logarithm problem (DLP) is key to assessing the security of many public-key cryptosystems. The index-calculus methods, that attack the DLP in multiplicative subgroups of finite fields, require solving large sparse systems of linear equations modulo large primes. This article deals with how we can run this computation on GPU- and multi-core-based clusters, featuring InfiniBand networking. More specifically, we present the sparse linear algebra algorithms that are proposed in the literature, in particular the block Wiedemann algorithm. We discuss the parallelization of the central matrix--vector product operation from both algorithmic and practical points of view, and illustrate how our approach has contributed to the recent record-sized DLP computation in GF(28092^{809}).Comment: Euro-Par 2014 Parallel Processing, Aug 2014, Porto, Portugal. \&lt;http://europar2014.dcc.fc.up.pt/\&gt
    corecore